CS 59300 — Algorithms for Data Science
Classical and Quantum approaches

Lecture 13 (10/23)
Diffusion Mpqle___ls__ ..

https:Ilruizhezhang.comlcoufse fall 2025.html

| Slides are.borrowed from Sitan Chen’s course
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Diffusion models

Forward process: Ornstein-Uhlenbeck

dXt — _Xt + \/_dBt
o ~ q (data distribution)
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Diffusion models

Forward process: Ornstein-Uhlenbeck

c=e "t Xg+y1—e2t.g  for g~N(0,D)

o ~ q (data distribution)
prove this latter
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Diffusion models

Forward process:
qo = 4

dXt — _Xt + \/_dBt
o ~ q (data distribution)
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in practice,
can only run
for finite time



Diffusion models

Reverse process:

dX; = {X;7 +2VInqgr_ (X))} dt + V2 dB, prove this latter

—

o ~ qr (forward process at time T)
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Diffusion models

To sample fresh images, run reverse process with Gaussian initialization

dX; = {X; +/2VIn qT_t(Xf)]}gt ++/2 dB,

“score function”
o ~ qr (forward process at time T') How to estimate it?
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Score matching

Tweedie’s formula. Given ¥ = x + e forx ~ p and e ~ N (0, a21),
Elx |X] =%+ 0% -VInp(x)

where p is the density for X S Cpayes = —0?VInp(%)

Song-Ermon "19: reduce estimating the score function to a supervised learning task:

Given noisy image X;, predict noise y that was added

X, :‘e—t .Xq _|_l\/1 —e2.g

X e ~ N(0, (1 —e2t)])
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Score matching

Tweedie’s formula. Given ¥ = x + e forx ~ p and e ~ N (0, a21),
Elx |X] =%+ 0% -VInp(x)

where p is the density for X S Cpayes = —0?VInp(%)

Song-Ermon "19: reduce estimating the score function to a supervised learning task:

Given noisy image X;, predict noise y that was added

Fit a neural net to training
examples to drawn from g,
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Score matching

GivenX¥ = x + eforx ~pande ~ N(0,52]),
Elx |X] =%+ 0% -VInp(x)

where p is the density for X S Cpayes = —0?VInp(%)

Song-Ermon "19: reduce estimating the score function to a supervised learning task:

g® ~ (0
Fit | net to traini 1% 1 / 2
it a neural net to trainin . . _
J St = arg min —z g® + NN (e‘tX(‘) ++/1— e‘Ztg(‘))
examples to drawn from g, NNeFn £ ||Vl — e 2

eq[”St(Xt) —Ving:(X)I*1 <e€é Vit
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Diffusion models

To sample fresh images, run reverse process with Gaussian initialization

—

o ~ qr (forward process at time T)
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“score function”
How to estimate it?




Diffusion models

To sample fresh images, run reverse process with Gaussian initialization

b
£ %ir's:a

> =

dX; = (X5 + 257 (X))} dt + V2 dB,

—

o ~ qr (forward process at time T)
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can’t run in continuous
time, need to discretize




Diffusion models

To sample fresh images, run reverse process with Gaussian initialization

b
£ %ir's:a

h,2h, 3h, ...

e __t=h2hBh . 4=

dX; = (X7 + 257, (X530} dt +V2dB,  fort € [kh, (kk + 1)h)

—

o ~ qr (forward process at time T)
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Diffusion models

To sample fresh images, run reverse process with Gaussian initialization

b
£ %ir's:a

h,2h, 3h, ...

________________>

X =e" Xgn + (" = 1) 2sr_1n (X)) + NV (0, (e2" = 1)1)

—

o ~ qr (forward process at time T)
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Deferred proofs

1. Integral solution for the Ornstein-Uhlenbeck process
dX, = —X, +V2dB, = X,=e t-X,+N(0,(1—e"2)))

2. Tweedie’s formula
E[x|%] =%+ 02 -VInpx)

3. Integral solution for the discretized reverse process:
Xiesnn = €" Xin + (e" = 1) 2sr_n (Xip) + NV (0, (e2"—1)1)

4. Reverse-time SDE
dX; = (XS +2VIingr_ (X))} dt + V2 dB;

October 25, 2025 13



Solve linear SDE

dX, = —X, + V2dB,

et (X, + dX,) = V2e'dB,, which implies that
d(etX,) = V2eldB,

Integrate from 0 to ¢ on both sides:

t t
etXt — XO = \/EJ e’ dBS - Xt = e_tXO +[\/§j es_t dBS}
0 0

By Itd’s isometry,

ﬁjt

t
eS"tdB, = (O,ZJ (es‘t)2d5> =N(0,(1—e %))
0 0
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Proof of Tweedie’s formula

¥=x+eforx ~pande ~ N(0,0%])
By Bayes’ rule,

1 (X —x)
JmeXp< 552 ) p(x)
p(%)

Plx|%]=

SO

— y)2 — 5
o =t g oo 45) 2 v

Observe that Vp (%)
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Proof of Tweedie’s formula

¥=x+eforx ~pande ~ N(0,0%])
By Bayes’ rule,

1 (¥ — x)?
_J\/ﬁexp<_ 202 )p(x)

p(x)

SO

X|=——=VIno(x
50 p(X)

E[x—f‘ .,]_Vﬁ(??)
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Reverse-time SDE

Forward process: dX, = —X; + V2dB;

0
5 4:(x) =V (xq:(x)) + Aq;

Reverse process: dX;~ = {X; + 2V In qr_.(X;,)} dt + V2 dB,

d
Eq?(x) = -V ((x+2VIngf (x)g; (X)) + Aqi

Fokker-Planck equation. Let {x;};s( follows dx; = u;(x;)dt + ,dB; and X, ~ m,. Then forall t > 0,
denoting the law of x; by m;, we have

9, 1 02
(0 = =V (0T (0) +5 ) (0007 @y )

dt - axian
Lj€ld]
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Reverse-time SDE

Forward process: dX, = —X; + V2dB;

0 —y A
57 a:(x) = - (xq: (X)) + Aq,

Reverse process: dX;~ = {X; + 2V In qr_.(X;,)} dt + V2 dB,

F(x) ==V ((x+2Vingf x)g; (X)) + Aqi
= -V (xqf () — Aqy

ECI

t=T—t 0

ot

0
72a:() = V- (xq:(x)) + Aq, ai () = =V (xqr () — Aqr-
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Discretization analysis

- Let pr be the law of the output of the algorithm after N = T /h steps

« Our goal is to show that TV(py, q) is small

We need to bound three sources of error:

1) the initialization of the algorithm at pure Gaussian noise rather than at gt

2) the estimation of the score function

3) the discretization of the SDE with step size h > 0

Assumption | (L-accurate score estimate): Forall t = 0, h, 2h, ..., T, the score estimate s;(-) satisfies
Ieq[”St(Xt) —Vingq.(X)II?] < €&

Assumption Il (Smoothness): Forallt = 0, VIn g, (+) is L-Lipschitz

Assumption 1l (Bounded second moment): m3 := [Eq[IIxIIZ] < ©
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Convergence guarantee

Theorem (Chen et al. ’23). Under , if pr is the law of the output of the algorithm
after N = T /h iterations with step size h,

TV(pr, @) S VKL(qlly) - exp(—=T) + (LVdh + Ly h)NT + €5VT
error from i'nitializing at discretizz;tion error scc'Jre
Yy = N (0,1) instead of g error

2
Suppose KL(q|ly) < poly(d) and m3 < d. Choose T = log(KL(q||y)/€) and h = ;—d gives

~ TV(pT» Q) — 6(6 + Esc)
with N = O(L?d /€?) steps

To get e-close in TV, it suffices to estimate the score function to within e;. < O(¢€) accuracy
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Bound initialization error

1.  Forward process converges exponentially quickly to Gaussian

KL(grlly) < exp(—2T) KL(qolly) = exp(—2T) KL(qlly)

2. Running reverse SDE starting from Gaussian vs. from g cannot increase distance between them (data
processing inequality)

KL(q”pT) = KL(reverse(qT)||reverse()/)) < KL(qrlly)

3. Pinsker’s inequality: TV(pT,q)S\/%KL(qIIpT)

October 25, 2025 21



Discretization argument

Consider the ideal reverse process (continuous, perfect score) and algorithm (discrete, estimated score),
with both initialized at g1

dX; = (X7 +2Ving,_ (X))} dt + V2 dB;
dX; = {X; + 257, (X))} de +V2dBy Xy = e" X + (€ = 1) 257500 (Xi) + V(0,2 = 1)

To control the distance between these processes, we use Girsanov’s theorem, a powerful tool for bounding
distance between laws of processes driven by the same Brownian motion

Intuition: distribution over last iterate of reverse process is hard to characterize, but distribution over
trajectory just given by a bunch of Gaussian samples
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Girsanov’s theorem

Consider the SDE’s
dX, = b, dt + V2 dB,
dX, = b, dt + V2 dB,
with the same initial distribution.

Let Qr, P+ denote the laws of the overtimeT, i.e. . Then

dQ, <1JT 1JT )
—— =exp| — b, — b}) dB; — — b, — bl||? dt
dp, p\/io(t ¢) dB; 40||t ll

where B; is a standard Brownian motion w.r.t. Py

October 25, 2025 23



Heuristic proof of Girsanov’s theorem

For the SDE’s:
dx, = b, dt + V2 dB; (in Q-world)
dx, = b, dt + V2 dB, (in P-world)
consider the discrete-time approximation:
Re+)n = Zien + hbyn (X)) + V2hgin  (in Q-world)
Re+1)n = Zien + hbiy (Zien) + V2hgy,  (in P-world)
For a , What are the in Q-world and P-world?

Q-world: Ly « HQ’;& exp (—ﬁ ||f(k+1)h — Xgn — hbkh(jc\kh)nz)

P-world: Lp o [INZ3 exp (—ﬁ R 1yn = Rien — hbllch(’?kh)nz)
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Heuristic proof of Girsanov’s theorem

For a , What are the in Q-world and P-world?

. 1 ~
Lo ’,X(}exp( _h”x(k+1)h_xkh hbkh(xkh)nz)

. 1 (%
Le A’,goexp( a7 R vn = Zien = hbkh(x"‘h)||2)

hby, (Xxn) + V2hgyn in P-world

1 I 1
= exp <— T (h2|lbgn 1?2 — K2 |bgg, R I1? — 2h{(R (k4 1) — Rk bicn Fien) — bich@kh))))

{ =
=

k=0
N-1 ,
= exp <— ah (R2|1bren Rer) — brn EerdI? = 2V2R{(Vhgin, bicn Rin) — bllch(fkh)»)
k=0
N-1 N-1
1 ~ o , 1 ~ o
= exp| —— z hl|bgn (Xkn) — b Zxp) Il + —= z (‘/ﬁgkh; bin (Xkn) — bkh(xkh))
4 k=0 V2 k=0
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Heuristic proof of Girsanov’s theorem

For a , What are the in Q-world and P-world?
1N 1 N-1
T 2 z hllben (Rien) — bin Erw)II? + NG 7 \/—gkh» bin (Xin) — bkh(xkh)>
k=0 k=0
(h—0) 1fT 1 (7 > dQr
— exp| —— b; — b 2dt+—[ b, — b;)dB; | = —
p( 4, || b; ell N (b; | t) t dP;

martingale in P-world
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KL divergence bound from Girsanov’s theorem

BM in P-world
1 T
KL(Qr|Pr) = Eq [—Z f Ibe = bilI*dt + — f (be = badBT
0

By Girsanov’s theorem, we can relate the Brownian motion in P-world to Q-world:

3 |
b.dt +V2dB, = bldt +V2dB, = dB, = 5 (bl — b,)dt + dB,

a new BM in Q-world

1 (T ~
0

_ g UTIIb b’IIZdt]+ LE [ a5,
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Warmup: Girsanov analysis for Langevin dynamics

Suppose the target distribution g is strongly log-concave:
ULA: dX, = —VIng(%,,) dt +vV2dB, fort € [kh, (k + 1)h]
LD:  dx, = —VIng(x,)dt + v2dB,

(T/h—1

1 (k+1)h
KLADIULA) = 3Ein| Y [ 17InqG) = VingC)IPde
k=0 “kh
12 (T/h=1 (ks 1)n _
< ZELD z j 1 — xppll2dt
£ Jin

t—kh 2
J Vin Q(xkh+s)d5 + \/E(Bt - Bkh)
0

lxe = xpen |1 =

t—kh
< Zhj IV1n q(xgpis)lI*ds + 411B, — Bypll?
0
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Warmup: Girsanov analysis for Langevin dynamics

Suppose the target distribution g is strongly log-concave:
ULA: dX, = —VIng(%,,) dt +vV2dB, fort € [kh, (k + 1)h]
LD:  dx, = —VIng(x,)dt + v2dB,

(T/h—1

1 (k+1)h
KLADIULA) = 3Ein| Y [ 17InqG) = VingC)IPde
k=0 “kh
12 (T/h=1 (ks 1)n _
< ZELD z j 1 — xppll2dt
£ Jin

T
< Lzhzj E p[lIVInq(x,)||?]dt + L*dhT
0

LZ
EplllVIng(xp)ll?] s Ld + — KL(Law(xo)llq)
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Warmup: Girsanov analysis for Langevin dynamics

Suppose the target distribution g is strongly log-concave:
ULA: dX, = —VIng(%,,) dt +vV2dB, fort € [kh, (k + 1)h]
LD:  dx, = —VIng(x,)dt + v2dB,

LZ
KL(LD||ULA) < L2R2T (Ld +— KL(Law(xO)IIq)> + L2dhT

62

L2ar’
KL(Law(x7)||Law(%7)) < KL(LD||JULA) S €2

For sufficiently small ¢, if we take h = then

Since q satisfies a-LSI, if we take T = %log(KL(Law(xo)IIq)/e), then KL(Law(x7)|lg) < €2

Finally, by Pinsker and triangle inequality for TV distance, we get that
TV(Law(X;),q) S \/KL(LaW(xT)IILaW(y?T)) + \/KL(Law(xT)Ilq) <e€
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Warmup: Girsanov analysis for Langevin dynamics: bound
E plllVIng(x)l?]

Suppose the target distribution g is strongly log-concave:

By the definition of W,,
ELplllVIng(x)II?] S EgllIVIng(x)[I?] + L*W5 (Law(x¢), q)
For the first term,

i.b.p.
Eq[l[VIn g()||?] = j(Vq,Vln q) dx =p— (Alng)g(x)dx < Ld

For the second term,

12 12
L?W7 (Law(x,), q) < — KL(Law(xp)llq) = —KL(Law(xo)llq)

Talagrand’s T, inequality data processing inequality
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Girsanov analysis for diffusion model

ALG: dX; = ()?t + ZST_kh()?kh)) dt ++2dB, fort € [kh, (k + 1)h]

TRUE:  dX, = (X; + 2VIng,_,(X,))dt + V2dB,
Following the same argument,

T/h=1  (k41)n
KL(TRUE||ALG) = Etryk z J IVIngr_e (X)) = Sp_ien (Xpep) l17dt
k=0 "kh
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Girsanov analysis for diffusion model

We can decompose ErruelllVIn gr_ (X)) — VIn sy, (Xen)||?] into:

1. E[IVInGr—pn (Xen) = s7—en Xen)I1P] < €&
2. E[IVIngr—(Xpn) — VIngr_pn (X lI?]

3. E[llVIngr_(X) = VIngr_ (X1
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Space discretization

By Lipschitzness of the score function,

E[IVIngr_(X¢) — VIngr_¢ (en)lI?] S LPE[IIX; — Xiep, 11°]
The joint distribution of (X;, X)) = (Xt, e~k x. + n(0,(1 - e‘z(t‘kh))l))
ELIX, — Xien 1121 S (1 — e~ CFD) E[|X 2] + (1 — e~2C—kM)d

X, =e T DX+ N(0,(1—e2T7D)) forX ~ q
E[lIX.11?] s e 2T VE[IXII2]+ (1 —e2T"9)d <m3 + d

Therefore,

E[IIVIngr_ (X)) = VIngr_, (X, )1?] < L*h*m3 + L?hd
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Time discretization

E[lIVIngr_:(Xpn) = VIngr_pn ()%

Consider p o« exp(=V), V2V =L -1,andp’ = p * N'(0,52I), i.e. Gaussian convolution
Our goal: E,[|[VInp — VInp'[*]
Notice that

Vinp'(x) = —[pr,a[VV(y)] where p,, = Law(y|y + og = x) fory ~p

/ 2
E.p[IVInp —Vinp'|[2] = E,_, [||1Ey~px'a[v1/(y) — V()| ] < LPE, By [llx = ylI?]
Law(x,y) = Law(y + ag,y) fory ~p

Thus, E,_/[|IVInp — VInp'||?] < L?0%d

xX~p

See Lemma C.12 in (Lee-Lu-Tan ’22) for the full proof
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Convergence guarantee

Assumption | (L#-accurate score estimate): Forall t = 0, h, 2h, ..., T, the score estimate s;(-) satisfies
eq[”St(Xt) —Ving (X)II*] < €&

R Rl A S e O Qe Gl Gl B S @A s | “@37]y StOpPPINg” (Chen-Lee-Lu ’23)

Assumption Il (Bounded second moment): m3 := [Eq[llxllz] < o0
Theorem (Chen et al. ’23). Under Assumptions I-lll, if pr is the law of the output of the algorithm
after N = T /h iterations with step size h,

TV(pr, q) S VKL(qlly) - exp(—=T) + (LVdh + Lmyh)VT + s NT

initialization error discretization error score error

2 . ~
Choose T = log(KL(q||y)/€) and h = Lez—d gives TV(pr,q) = O(e + €5.) with N = O(L?*d /€?) steps

Using ODE flow + Langevin corrector can achieve Vd steps (Chen-Chewi-Lee-Li-Lu-Salim ’23)

SOTA DDPM convergence bound: N = d /e (Li-Yan ’25)
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Stochastic localization

Let Ty be a probability measure over R% with mean m,

Define a stochastic process {c;}:>o as follows:
CO — O, dCt - mtdt + dBt

t
where m; := E. [x] and m;(X) o exp ((ct, X) — 5 ||x||2) To(X)

We call the random induced measures {7, };s( the stochastic localizatio Stochastic Localization (t=0.00)

« Ast —> oo, m > Oy i.e. m; localizes towards a delta-measure at son

«  {m:}ts0 is measure-valued martingale i.e. E[m,(X)] = my(x) for all
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SL < Diffusion model

1. t+1
Consider the reverse process of diffusion model (re-parameterized): t flog

dX; = X + .
E2t(t+ 1) t(t+1)

1
Vinm, (Xf)} dt + dB;
Je(t+ 1)

with X ~ (0, 1)

Then the processes {C; };>¢ and {X; };s¢ satisfy \/t(t + DX = ¢;

dc; = m;dt + dB; with the change of variable \/t(t + 1)X{ = c; gives

2t + 1 1 1
Xcdt + dB
2t + 1)t t(t + 1) tt+1)

m,dt +
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SL < Diffusion model

1. t+1
Consider the reverse process of diffusion model (re-parameterized): t flog

dX; = X + .
E2t(t+ 1) t(t+1)
with X ~ (0, 1)

Then the processes {C; };>¢ and {X; };s¢ satisfy \/t(t + DX = ¢;

1
Vin n;(x;)} de + dB,

Je(t+ 1)

XS =Xy fort' = %log% in the forward process, which distributed as et X, + (1- e‘Zt')g
By Tweedie’s formula, VInm; (X)) = /t(t + DEc[Xo] — (€ + DX

2t + 1 1 1
dxX; = XS+ E.c[Xol{ dt + dB,

2t + 1D Jtc+D " Jtc+ D

October 25, 2025 39




SL < Diffusion model

1 t+1
Consider the reverse process of diffusion model (re-parameterized): t flog
dx: = i L (X)) b dt + L B
Y2ttt + D) t(t+1) e e Jte+1
with X5 ~ N (0,1)
Then the processes {C; };>¢ and {X; };s¢ satisfy \/t(t + DX = ¢;
dX; cttl X de + . dt +
m;
t 2t(t+ 1" Jtt+1) \/t(tT
axp =12t e s b B ol ded —— dB
Co 2+ DT e Jee+1)
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SL < Diffusion model

1 t+1

Consider the reverse process of diffusion model (re-parameterized): t Elog

dB,

X; 1 1
dX: = Vin n‘_(X‘_)} dt +
t {Zt(t+1> te+1)  F Jte+ 1D

with X ~ (0, 1)

Then the processes {c;};>o and {X; };»¢ satisfy \/t(t + 1)X = ¢;

m; is the density ofe‘t,XO + (1 — e_Zt')g = #XO + \/t1+—19

(x0|x;)o<exp<——H,/t/t+ Xo— X¢ || >n0(X0) T (Xo)

l

1

X exp (\/ t(t + (X, Xp) — ||Xo||2) mo(Xo) = exp ((Ct'XO> —= ||X0||2) o (Xo)
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Provable score estimation

El Alaoui-Montanari-Sellke '22; Celentano '24: Sampling from the Sherrington—Kirkpatrick model where
Ty (x) < exp(—Bx"Wx)
W € R%*4 js a random matrix with i.i.d. Gaussian entries

- El Alaoui-Montanari-Sellke '23; Huang-Montanari-Pham ’24; Huang-Mohanty-Rajaraman-Wu ’24:
Sampling from the p-spin spherical spin glass

«  Montanari-Wu ’23; Montanari-Wu ’24: Bayesian posterior sampling: observing A = g@TG + W where

6 ~, {—1,1}%, sample from the posterior distribution
P(8|A) < exp (— g HTA0>

- Shah-Chen-Klivans ’23; Chen-Kontonis-Shah '24; Gatmiry-Kelner-Lee "24: learning mixtures of Gaussians

- Chewi-Kalavasis-Mehrotra-Montasser '25: Statistical theory for score estimation (and a comprehensive
literature review on diffusion model theory)
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